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Abstract Geostatistical techniques are used to build probabilistic models
of uncertainty about unknown true values. The goodness of these proba-
bilistic models can be assessed by measures related to the two concepts of
accuracy and precision.

A probability distribution is said to be accurate if the 10% symmetric
probability interval (PI) contains the true value 10% (or more) of the time,
the 20% PI contains the true value 20% (or more) of the time, and so on
for increasingly wide probability intervals. To directly assess this measure
of accuracy we can use the “leave-one-out” cross validation approach or the
“keep-some-back” jackknife approach. For a given probabilistic model, the
idea is to build distributions of uncertainty at multiple locations where the
true values are known. Accuracy may then be judged by counting the num-
ber of times the true values actually fall within fixed probability intervals.
Accuracy could be quantified for different probabilistic models (Gaussian,
Indicator, Object-based, and Iterative/Annealing) and different implemen-
tation options.

Precision is a measure of the narrowness of the distribution. Precision
is only defined for accurate probability distributions; without accuracy, a
constant value or Dirac distribution would have the ultimate precision. A
probability distribution where the 90% PI contains the true value 99% of
the time is accurate but not precise. Optimal precision is when the 90% PI
contains the true value exactly 90% of the time.

1. Introduction

The basic paradigm of geostatistics is to model the uncertainty about any
unknown value z as a random variable (RV) Z characterized by a specific
probability distribution. The unknown value z could be a global parameter
such as the economic ultimate recovery of an oil field or a local attribute
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such as the porosity at a specific location u. Often, global parameters are
the result of a complex non-linear process that may be simulated with rela-
tively costly flow simulation of a high resolution numerical model. There are
many ways of building these numerical models: (1) parametric approaches
such as the multiGaussian model, (2) parameter-rich or distribution-free
models such as provided by the indicator formalism, (3) object-based al-
gorithms where objects are stochastically positioned in space, or (4) via
simulated annealing. Moreover, each approach calls for many subjective
implementation decisions related to specific computer coding, variogram
measures of continuity, search strategies, size distributions, and conver-
gence parameters.

This paper is concerned with checking the goodness of a probabilistic
model, comparing it to alternative models, and perhaps fine-tuning the
parameters of a chosen model. Before proceeding further, we must recognize
that probabilistic models may only be checked by: (1) the data used for
modeling, (2) some data held back from the beginning, or (3) additional
knowledge of the physics of the phenomena, e.g., information that would
allow classifying some realizations as implausible. In this paper, the “leave-
one-out” cross validation and the “keep-some-back” jackknife approachs
are considered. As for point (3), the goal is to incorporate such knowledge
into the probabilistic model as soft or secondary data.

The goodness of a probabilistic model may be checked by its accu-
racy and precision. In general, accuracy refers to the ultimate excellence of
the data or computed results, e.g., conformity to truth or to a standard.
Precision refers to the repeatability or refinement (significant figures) of a
measurement or computed result.

For clarity and in the context of evaluating the goodness of a prob-
abilistic model, we propose specific definitions of accuracy and precision.
For a probability distribution, accuracy and precision are based on the ac-
tual fraction of true values falling within symmetric probability intervals of
varying width p:

— A probability distribution is accurate if the fraction of true values
falling in the p interval exceeds p for all p in [0,1].

— The precision of an accurate probability distribution is measured by
the closeness of the fraction of true values to p for all p in [0,1].

A procedure for the direct assessment of local accuracy and precision is
now described.
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2. Assessing Local Accuracy

2.1. DEFINITIONS

Consider the “leave-one-out” cross validation approach. Values at n data
locations u,,i = 1,...,n, are simulated one at a time using the remaining
n — 1 data values, i.e., leaving out the data value z(u;). Stochastic sim-
ulation leads to L (L large) stochastic realizations {z(!)(w;),l = 1,...,L}
at each left out data location. These L realizations provide a model of the
conditional cumulative distribution function (ccdf):

F(w;z|n(w;)) = Prob{Z(w;) < z|n(u;)} (1)

where n(u;) is the set of n data minus the data at location u;. These local
cedf models may be (1) derived from a set of L realizations, (2) calculated
directly from indicator-kriging, or (3) defined by a Gaussian mean, variance,
and transformation.

The probabilities associated to the true values z(u;),i = 1,...,n are
calculated from the previous ccdf as:

F(u;;z(u,']fn(u,-)), 1= 5.0

For example, if the true value at location u; is at the median of the simulated
values then F'(u;; z(u;)|n(u;)) would be 0.5.

Consider a range of symmetric p-probability intervals (PlIs), say, the
centiles 0.01 to 0.99 in increments of 0.01. The symmetric p-PI is defined
by corresponding lower and upper probability values:

(1+p)
2

1l =p) d 0y
Plow = 5 an Pupp =

For example, for p = 0.9, pioy, = 0.05 and pyy, = 0.95.
Next, define an indicator function £(u;;p) at each location u; as:

0, otherwise

o) :{ 1, if F(uj;2(w)|n(w) € (Plow Pupp) @)

The average of £(u;;p) over the n locations u;:

£(p) =

3=

3 €(uisp) (3)
=1

is the proportion of locations where the true value falls within the symmet-
ric p-PL.

According to our earlier definition of accuracy, the simulation algorithm
used to generate the ccdfs (1) is accurate when £(p) > p, V p. A graphical
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way to check this assessment of accuracy is to cross plot &(p) versus p and
see that all of the points fall above or on the 45? line. This plot is referred
to as an accuracy plot, see Figure 1 and example hereafter.

An equivalent way to calculate £(p) is to define the indicator &(u;p) =
Lif z(u) € [F~(w;piow|n(w)), F~(u; puppln(u))], otherwise &(u;p) = 0.
That is, define the indicator on z values instead of p values. The advantage
of defining the indicator on probability values as in relation (2) is that
significantly fewer quantiles must be calculated because pj,, and py, are
global parameters independent of the location u;. For example, with n =
1000 and n, = 99 centiles we calculate either 1000 probabilities or 99 - 2 -
1000 = 198000 quantile values for the same result.

2.2. A FIRST EXAMPLE

Consider n = 1000 independent uniformly distributed random numbers
zi;t = 1,...,n drawn from the ACORN generator (Wikramaratna 1989).
For each outcome, the correct corresponding ccdf of type (1) is a uniform
distribution in [0, 1]:

0.0, forz<0
F(3;z|(n(2))) =4 2, for0<z<1
1.0, forz>1

The probability of each true value 2;,7 = 1,...,n is that value itself, i.e.,
F(i;zi|(n(i))) =z, i=1,...,n (4)

The average indicator function £(p) was calculated for each centile p =
1650 = 1,...,99 and the resulting accuracy plot is shown on the top of
Figure 1. Note that the plot is very close to a 45° line indicating that this
cedf model is both accurate and precise.

The middle row graphs of Figure 1 illustrate the accuracy plot if the
ccdfs were expected to be uniform between -0.5 and 1.5. The simulated
distributions are still accurate, because the probability intervals are suffi-
ciently wide, but not precise. The 0.5 PI of this ccdf model contains all of
the true values, therefore, £(0.5) = 1.0.

The lower graphs on Figure 1 show the results when the ccdfs are mod-
eled to be triangular distributions between 0 and 1 with mode at 0.5. The
simulated distributions are no longer accurate. In fact the 0.5 PI only con-
tains 25% of the true values.

2.3. QUANTITATIVE MEASURES OF ACCURACY AND PRECISION

A distribution is accurate when &(p) > p. To develop a measure of accuracy,
an indicator function a(p) is defined for each probability interval p, p €
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Figure 1. Accuracy plots for n = 1000 independent uniformly distributed in PJ. 1]
random numbers z;,4 = 1,... ,n. The plots correspond to (1) a correct uniform
distribution between () and 1, (2) a uniform distribution between -0.5 and 1.5, and
(3) a triangular distributions between 0 and 1 with mode at 0.5.
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(0,1]: A o
a(p) = { 1, ifé(p)2>p (5)

0, otherwise

where a(p) is an indicator variable set to 1 if the distribution is accurate
at p and 0 if not. A summary measure of accuracy is defined as:

a= [ " alp)ds (6)

where A = 1.0 for maximum accuracy (£(p) > p Vp € [0,1]) and A = 0.0
in the worst case, i.e., no true values are contained in any of the probability
intervals (£(p) = 0, Vp € [0,1]). In practice, the integral A is numerically
approximated by a discrete summation over K probability values py,k =
AT 8

Prec1510n is defined as the closeness of £(p) to p when we have accuracy
(€(p) > p). Numerically, we can calculate a measure of this difference:

—1~2f 2)E®) - pldp (7)

where P = 1 for maximum precision (£(p) = p, Vp € [0,1]) and P=0in
the worst case, i.e., all true values are in all probability intervals (§(p) =
1.0 ¥p € [0,1]). Once again, P is numerically approximated by a discrete
summation over K probability values pp,k=1,..., K. .

As seen on the top of Figure 1, there are some instances where &(p) <
p by some small amount. The previous definitions of accuracy (6) and
precision (7) fail to account for the inaccurate cases &(p) < p. We define
a measure of goodness as the departure of the points from the 45 line on
the accuracy plot. Inaccurate values (£(p) < p) are more consequential and
are weighted twice:

¢ = 1-[[ «o)E® -sldp+2 [ 1~ ellp - EGN] ()
= 1- [ [3alp) - 21 [€G) -] dp

where G = 1 for maximum goodness (£(p) = p, Vp € [0,1]) and G =0 in
the worst case, i.e., no true values are contained in any of the probability
intervals (£(p) =0, Vp € [0,1]).

Table 1 gives the accuracy, precision, and goodness statistics for the
results on Figure 1. Note that the triangular distribution is not as good as
the too-wide uniform distribution because of the more severe penalty for

inaccuracy (£(p) < p).
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CCDF Model Accuracy A Precision P Goodness G
uniform € (0, 1] 0.484 0.991 0.985
uniform € (—0.5, 1.5] 1.000 0.500 0.750
triangular € (0,1] (mode at 0.5) 0.000 0.000 0.649

TABLE 1. Summary of results shown on Figure 1.

2.4, ANOTHER WAY OF LOOKING AT ACCURACY AND PRECISION

The distribution of the random variable Y (u;) = F(u;;z(w)|n(w)), 1 =
1,...,n, definition 4, will now be considered. For the probabilistic model
to be accurate and precise, the Y-marginal distribution f(p'),p' € [0,1]
must be uniform in M Indeed, from the definition of an accurate and
precise distribution (£(p) = p, Vp € [0,1]):

.l_ftﬁ
ﬁ  f)dy =Ep) =p,Vp€[0,1] = f(p') =10, Vp' €0,1]

e )
2

Thus, when the interval [0,1] is divided into N subsets one should get
approximately the same number of y-values in each subset for an accurate
and precise distribution. A chi-square test could be used to check how close
that y-distribution actually is to uniform. Figure 2 shows the histograms
for the example illustrated on Figure 1.

The histogram of y(u;),7 = 1,...,n should be considered together with
the accuracy plot and summary statistics. There are pathological cases
where incorrect (aysmmetric) distributions of uncertainty lead to a “cor-
rect” accuracy plot. This histogram identifies those situations of systematic
overestimation or underestimation.

2.5. UNCERTAINTY

Good probabilistic models must be both accurate and precise. There is
another aspect of probabilistic modeling, however, that must be considered:
the spread or uncertainty represented by the distributions. For example, two
different probabilistic models may be equally accurate and precise (G = 1.0)
and yet we would prefer the model that has the least uncertainty. Subject to
the constraints of accuracy and precision we want to account for all relevant
data to reduce uncertainty. For example, as new data becomes available our
probabilistic model may remain equally good (G = 1.0) and yet there is
less uncertainty.
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Figure 2. Histograms of y(u;),7 = 1,...,n for the three examples illustrated on
Figure 1.
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If we systematically took the global histogram as the model of uncer-
tainty at each location we would find that this conservative probabilistic
model is both accurate and precise. The uncertainty, however, is large. Un-
certainty increases as the spread of the probability distribution increases
and could be quantified by measures such as entropy, interquartile range,
or variance.

The measure of entropy has attractive features from the perspective
of information theory or statistical mechanics. The interquartile range has
attractive features from the perspective of robust statistics. The variance is
preferred here because of its simplicity and wide acceptance as a measure
of spread. The uncertainty of a probabilistic model may be defined as the
average conditional variance of all locations in the area of interest:

U—lN ?(u 9
_ﬁga(ul} (]

where there are N locations of interest u;,i = 1,..., N with each variance
o*(u;) calculated from the local cedf F(u;; z|n(u;)).

The uncertainty statistics for the simple example presented in Figure 1
are 0.0833, 0.3333, 0.0424, respectively. Although the triangular distribu-
tion has the least uncertainty, it is not recommended since it is neither
accurate nor precise, see Figure 1 and Table 1. To be legitimate, uncer-
tainty can not be artificially reduced at the expense of accuracy.

3. Reservoir Case Study

To further illustrate the direct assessment of accuracy and precision, con-
sider the “Amoco” data consisting of 74 well data related to a West Texas
carbonate reservoir. Figure 3 shows a location map of the 74 well data and
a histogram of the vertically averaged porosity for the main reservoir layer
of interest.

Sequential Gaussian simulation (Isaaks 1990, Deutsch & Journel 1992)
was performed at each of the 74 well locations using the “leave-one-out”
cross-validation approach. Two alternative semivariogram models for the
normal score transform of porosity were considered: (1) that built from the
complete 3-D set of porosity data, and (2) that built from the 74 vertically
averaged values. These two different variogram models result in two differ-
ent sets of ccdfs. Figures 4 and 5 show the two semivariogram models and
the corresponding accuracy plots, A, P, and G scores. The semivariogram
built from the vertically averaged values leads to better ccdf models. Also,
that semivariogram model leads to a lesser uncertainty measure U = 0.433
down from U = 0.757 for the first semivariogram model.
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Figure 4. Horizontal normal scores semivariogram from the 3-D porosity data
(calculated using stratigraphic coordinates) and the corresponding accuracy plot
considering cross validation with the normal scores of the 74 well data on Figure 3.

The page limitation prevents full presentation of the case study. On
the basis of work not shown, considering seismic data as soft information
for simulation of porosity with a carefully fit linear model of coregional-
ization allows further reduction of uncertainty while maintaining accurate
and precise distributions. Also, indicator simulation and annealing-based
simulation were shown to perform slightly better than Gaussian-based sim-
ulation because more spatial information is considered through multiple
indicator variograms.

4. Conclusions

We have developed the idea of directly checking local accuracy and precision
through cross validation. A probabilistic model of uncertainty is “good” if
it is both accurate and precise. In addition, the uncertainty should be as
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Figure 5. Horizontal normal scores semivariogram from the 74 vertically averaged
porosity and the corresponding accuracy plot considering cross validation with the
normal scores of the 74 well data on Figure 3.

small as possible while preserving accuracy and precision. The accuracy
plot combined with measures of accuracy (A), precision (P), goodness (G),
and uncertainty (U) are useful summaries to quantify the “goodness” of a
probabilistic model.

The main uses for the diagnostic tools presented here are: (1) detecting
implementation errors, (2) quantifying uncertainty, (3) comparing different
simulation algorithms (e.g., Gaussian-based algorithms versus indicator-
based algorithms versus simulated annealing-based algorithms), and (4)
fine-tuning the parameters of any particular probabilistic model (e.g., the
variogram model used).

These tools provide basic checks, i.e., necessary but not sufficient tests
that any reasonable stochastic simulation algorithm should pass. They do
not assess the multivariate properties of the simulation. Care is needed
to ensure that features that impact the ultimate prediction and decision
making, such as continuity of extreme values, are adequately represented
in the model.
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